





# **Testing for Softness and Smoothness**

- Softness and smoothness are achieved by reducing a formulation's friction.
- Frictional coefficient (MIU) is correlated with slipperiness.
- The standard deviation of MIU is mean deviation (MDD).
- MDD is correlated with smoothness.



# **Testing Frictional Properties**

#### **Process with a KES-SE\* Friction Tester**

- Spread 20 mg samples on 10 cm<sup>2</sup> SUPPLALE\*\* artificial leather
- Tested samples with the following fillers: nylon beads, PMMA beads,
   SOLESPHERE microspheres
- Dried with air drier
- Evaluated texture with KES-SE friction tester





## **Frictional Properties Test Results**



SOLESPHERE enhanced the formulation's slipperiness and smoothness versus plastic beads, especially after drying.



## **Soft Touch Feel of SOLESPHERE vs. Plastic Beads**



#### **PLASTIC BEADS**

- Plastic beads are soft, so they can deform when touched.
- This increases the contact and frictional force between the beads.



#### **SOLESPHERE MICROSPHERES**

 Silica beads are hard and do not deform. They are spherical, which improves rolling.



# AGC

## Influence of Sebum on Cosmetics



As sebum secretion accumulates, two things happen:

- 1. Light reflection is reduced and shiny spots form
- Too much sebum causes makeup to collapse/break up

Sebum secretion causes shiny spots and makeup deterioration.

\* Makeup film deterioration process: Kouichi Nomura, Journal of Oleo Science, Vol.5, 10, p447-454 (2005)



# **Testing Sebum Absorption with a Subumeter**

## **Process with Subumeter SM815\***

- Four men washed their faces.
- They immediately entered a room held at a constant 68 °F degrees and 55-60% humidity.
- After 30 minutes, two 1.0 mg/cm<sup>2</sup> samples were applied to their foreheads: one containing SOLESPHERE and one without.
- Sebum was measured with the sebumeter for 10 seconds after 30 minutes and after 150 minutes.









# Results of Sebum Absorption Testing with a Subumeter



**SOLESPHERE** decreased the sebum leakage.



## **Testing Sebum Absorption with a Glossmeter**

## Process with a BIO Color PG-1M Glossmeter\*

- A 1 mg/cm<sup>2</sup> sample of artificial sebum was mixed and applied to a BIOSKIN\*\* plate.
- Glossmeter measured shine at an 85° angle according to JIS Z 8741.

| INCI name                    | Contents (%) |  |  |
|------------------------------|--------------|--|--|
| Caprylic/capric triglyceride | 33.3         |  |  |
| Octyldodecyl myristate       | 33.3         |  |  |
| Oleic mcid                   | 20.0         |  |  |
| Squalane                     | 13.4         |  |  |



Indication of shine



BIOSKIN plate



# Results of Sebum Absorption Test with Glossmeter



When compared with plastic beads, SOLESPHERE better prevented shiny spots from forming.



## **How SOLESPHERE Absorbs Sebum**



SOLESPHERE's high pore volume can absorb considerable sebum, which helps makeup last longer.



# Comparison of the Physical Properties of Bead Fillers

|       | Grade              | Mean<br>particle size<br>(µm) | Pore<br>volume<br>(ml/g) | Specific<br>surface area<br>(m²/g) | Pore<br>diameter<br>(nm) | Oil absorption<br>capacity<br>(ml/100 g) | Bulk<br>gravity<br>(g/ml) |
|-------|--------------------|-------------------------------|--------------------------|------------------------------------|--------------------------|------------------------------------------|---------------------------|
|       | H-121-N            | 11.7                          | 0.62                     | 872                                | 2.8                      | 128                                      | 0.36                      |
|       | H-53               | 5.0                           | 1.88                     | 750                                | 10.0                     | 375                                      | 0.10                      |
| SSP   | H-51               | 5.1                           | 0.78                     | 870                                | 3.6                      | 161                                      | 0.23                      |
|       | L-51               | 5.1                           | 0.82                     | 321                                | 10.2                     | 168                                      | 0.23                      |
|       | H-121-ET           | 11.8                          | 0.83                     | 835                                | 4.0                      | 136                                      | 0.30                      |
| PMMA  | Microsphere M-305* | 8\                            | -                        | -                                  | -                        | 53                                       | 0.36                      |
| Nylon | SP-500**           | 5^                            | -                        | _                                  | -                        | 68                                       | 0.28                      |



# AGC

# **Testing Gloss and Matte Effect**

- A 1 mg/cm<sup>2</sup> lipstick formulation sample was applied to a BIOSKIN plate.
- Density =  $1.0 \text{ mg/cm}^2$
- Thickness: 10 μm\*
- PG-1M glossmeter\*\* measured shine at 20°, 60° and 85° angles.





<sup>\*</sup>General thickness of lipstick film: 8~20µm, Ref.: J. Soc. Cosmet. Chem. Japan, 37 (2003) 17-24.



## **Results of Gloss and Matte Effect Testing**







- Adding SOLESPHERE to the formulation decreased its glossiness.
- SOLESPHERE can provide a matte effect for cosmetic formulations.





# **Testing Formulation Stability**

## **Process**

- A lipstick formulation sample was clamped on the stage by a supporting fixture.
- It was stored overnight at 25 °C.
- Sample was measured by a FUDOH rheometer RTC.\*



## **Results of Lipstick Formulation Stability Test**



**SOLESPHERE** provided some physical stability.



# **Physical Properties of SOLESPHERE**

| SOLESPHERE Grade | Mean particle size<br>(μm) | Pore volume<br>(ml/g) | Specific surface<br>area<br>(m²/g) | Oil absorption<br>capacity<br>(ml/100 g) |
|------------------|----------------------------|-----------------------|------------------------------------|------------------------------------------|
| H-121-N          | 12.4                       | 0.62                  | 843                                | 132                                      |
| H-53             | 4.9                        | 1.87                  | 760                                | 359                                      |





## **Bead Fillers Tested**

| Fillers             | INCI                       | Particle size<br>(um) | Specific<br>surface area<br>(m²/g) | Oil absorption<br>(mL/100 g) | Specific<br>volume<br>(mL/g) |
|---------------------|----------------------------|-----------------------|------------------------------------|------------------------------|------------------------------|
| SSP H-121-N         | Silica                     | 11.7                  | 872                                | 128                          | 2.8                          |
| SSP H-53            | Silica                     | 5.0                   | 750                                | 275                          | 9.6                          |
| SSP L-51            | Silica                     | 5.2                   | 339                                | 163                          | 4.2                          |
| PMMA                | Polymethyl<br>methacrylate | 8                     | _                                  | 53                           | 2.7                          |
| Nylon               | Nylon-12                   | 5                     | _                                  | 58                           | 3.6                          |
| Competitor's silica | Silica                     | 6.1                   | 181                                | 140                          | 3.5                          |



# **Testing Slipperiness and Smoothness**

### **Method**

- Five 2.0 and 3.0 mg/cm<sup>2</sup> samples of water-in-oil sunscreen formulations were applied to a 10 cm<sup>2</sup> sample of SUPPLALE artificial leather.
- Formulations used nylon, PMMA and SOLESPHERE bead fillers.
- Samples were stored overnight at 25 °C.
- Samples were blow dried.
- Samples were evaluated with a KES-SE\* friction tester for MIU and MMD.





# Comparison of Smooth Feel Using Different Bead Fillers





- SOLESPHERE provided higher slipperiness and smoothness
- SOLESPHERE: hard particle and point-contact



## **SOLESPHERE vs. Other Brand Silicas**





- SOLESPHERE provided higher slipperiness and smoothness.
- SOLESPHERE has higher specific volume and more particles per unit weight.



## **Conclusions**

- It's challenging to achieve both SPF and good frictional properties in sunscreens, BB creams and cosmetics. For example, the high load of UV absorbers such as ethylhexyl methoxycinnamate causes high stickiness.
- SOLESPHERE microspherical gels can moderate stickiness because they impart high slipperiness and smoothness properties into both oil- and water-based formulations.